

Мультиагентные системы (MAC): Применение коллективного искусственного интеллекта. Эмерджентный интеллект

Амелин Константин НОЦ СПбГУ «Математическая робототехника и искусственный интеллект» +79045105109 k.amelin@spbu.ru

МУЛЬТИАГЕНТНЫЕ СИСТЕМЫ

МАС – система, которая состоит из агентов

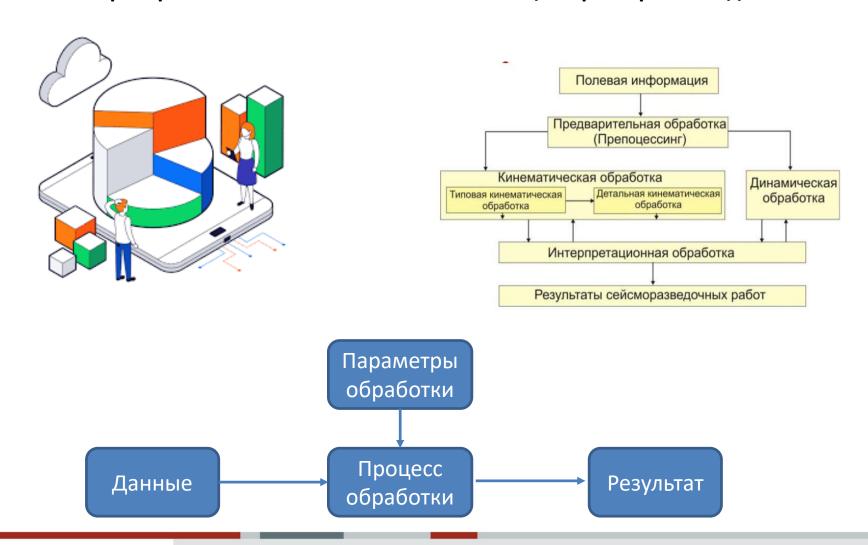
У каждого агента есть:

- убеждения (beliefs) представления агента о внешнем мире;
- желания (desires) локальные цели агента, которые агент хочет достичь;
- намерения (intentions) множество избранных, совместимых и достижимых желаний.

Агенты – главные действующие «лица», которые обладают свойствами:

- реактивность (англ. reactivity) агент ощущает внешнюю среду и реагирует на изменения в ней, совершая действия, направленные на достижение целей;
- проактивность (англ. pro-activeness) агент показывает управляемое целями поведение, проявляя инициативу, совершая действия направленные на достижение целей;
- социальность (англ. social ability) агент взаимодействует с другими сущностями внешней среды (другими агентами, людьми и т. д.) для достижения целей.

ЭМЕРДЖЕНТНЫЙ ИНТЕЛЛЕКТ



Эмерджентный интеллект (интеллект резонанс, интеллект роя) — это самоорганизующаяся система, которая достигает решения как «конкурентного равновесия», что достигается параллельной и асинхронной работой сотен и тысяч агентов по выявлению и разрешению конфликтов агентами с взаимными уступками на общем виртуальном рынке системы.

«Сила интеллекта» такого рода системы, могла бы измеряться приносимой ценностью, а также длиной и глубиной автокаталитических цепочек согласованных коллективных изменений состояний (мнений) агентов, спонтанно «вспыхивающих» в такой системе под действием входных событий или внутренней активности (проактивности).

«Многокритериальная стохастическая оптимизация при обработке данных»

Для каждого требования надо выбрать и согласовать соответствующую метрику качества (потерь).

Обычно метрики ошибок выбора модели можно трактовать как некоторые неотрицательные функции (показатели) потерь (loss)

$$f_i(x, \xi, \theta), i = 1, 2, \dots, n,$$

в которых

- *x* набор параметров процесса обработки,
- ξ помехи, возмущения,
- θ набор оптимальных параметров.

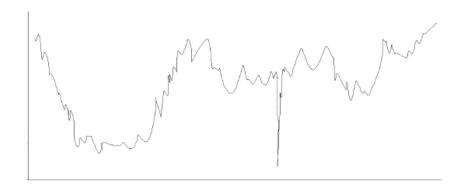


Рис. 3: Типичный вид функции $f_i(x, \xi, \theta)$ при некоторой реализации неопределенностей ξ .

При многокритериальной оптимизации применяют минимизацию свертки части показателей с некоторыми заданными весами

$$f(x,\xi,\theta) = \lambda_1 f_i(x,\xi,\theta) + \lambda_2 f_2(x,\xi,\theta) + \ldots + \lambda_l f_l(x,\xi,\theta)$$

при ограничении остальных метрик

$$f_{l+1}(x,\xi,\theta) \le \lambda_{l+1},$$

. . .

$$f_n(x,\xi,\theta) \le \lambda_n.$$

Обычно функция $f(x, \xi, \theta)$ при $x = \theta$ достигает своего минимального значения. Например, при $\xi = 0$ это верно для функций вида $f_i(x, \xi, \theta) = \|h_i(x) + \xi - h_i(\theta)\|^2$.

Решение задачи минимизации функции $f(x,\xi,\theta)$ при заданных ограничениях зависит от текущей реализации неопределенностей ξ . Традиционный подход для устранения этой зависимости от ξ — решение задачи минимизации функции, получающейся из усредненных по наблюдениям метрик

$$F(x,\theta) = \mathbb{E}_{\xi} f(x,\xi,\theta) \approx \sum_{j=1}^{N} f(x,\xi_j,\theta),$$

$$\theta \in \arg\min_{x} F(x, \theta).$$

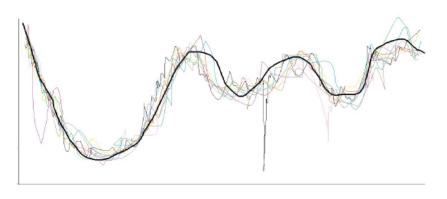


Рис. 9: Усредненная функция $F(x, \theta)$.

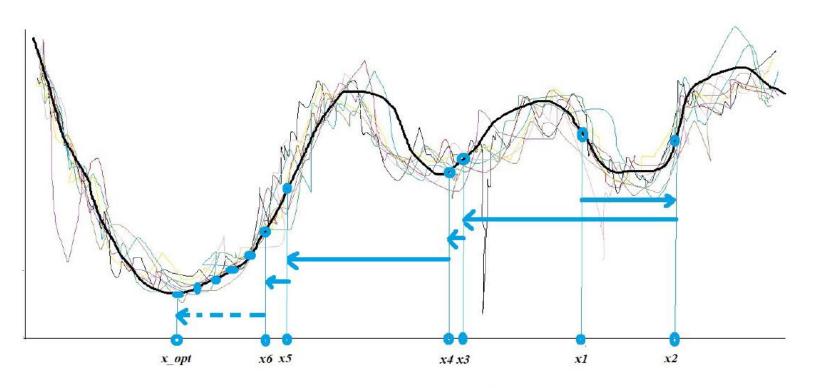


Рис. 16: $x6 \rightarrow \cdots \rightarrow x_{opt}$

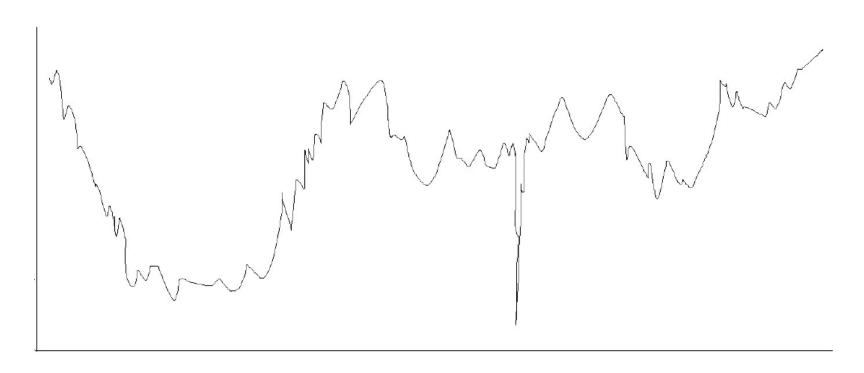


Рис. 19: Надо ли усреднять функцию при итеративной оптимизации?

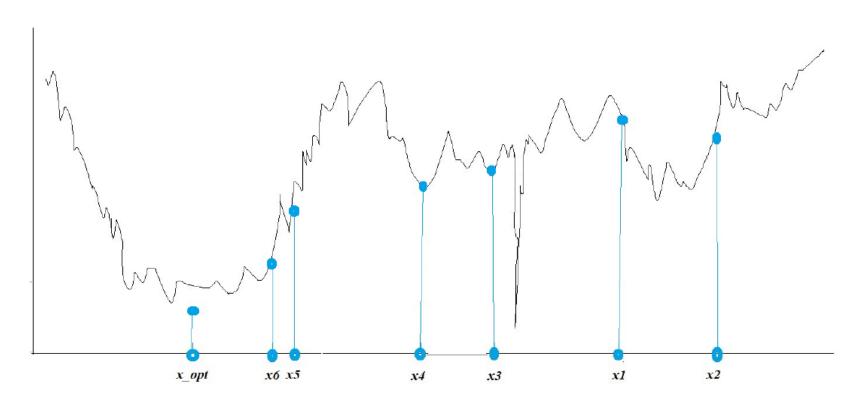
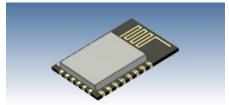


Рис. 21: Далее итерации делаем с $f(x,\xi_j,\theta)$ при разных ξ_j .

Подробности о современных методах стохастической оптимизации можно найти по ссылке на mathnet.ru на сайте Общероссийского семинара по оптимизации им. Б.Т. Поляка


(16 декабря 2022 г. 18:40, Москва, онлайн)

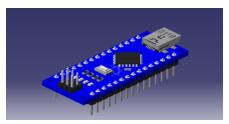
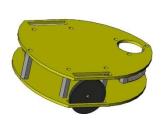
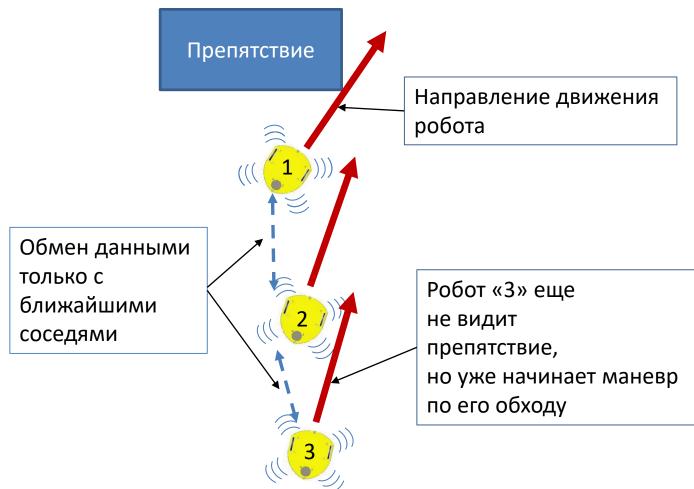


Рис. 23: QR-код веб-страницы

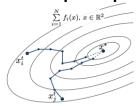



ЭМЕРДЖЕНТНЫЙ ИНТЕЛЛЕКТ В РОБОТАХ

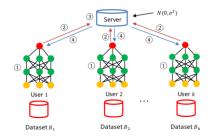
ПРИМЕНЕНИЕ ГРУППОВОГО ИНТЕЛЛЕКТА

«Рандомизированные алгоритмы многоагентной оптимизации, распознавания образов и оценивания в условиях существенных неопределенностей»

Прикладные задачи


- Большие данные
- Неопределенности

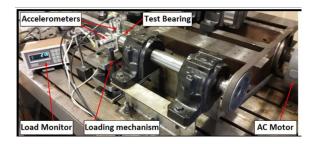
Групповое решение задачи наблюдения


- Звездочки это объекты наблюдения
- Круги это наблюдатели

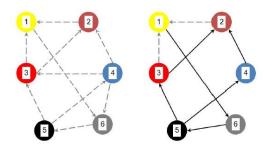
Распределенная оптимизация и оценка параметров

Поиск лучшего решения группой

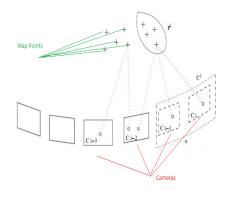
Распределенное обучение



Изучение локальных данных и обновления глобальных по данным соседей



ПРИМЕНЕНИЕ ГРУППОВОГО ИНТЕЛЛЕКТА


«Рандомизированные алгоритмы многоагентной оптимизации, распознавания образов и оценивания в условиях существенных неопределенностей»

Оценка состояния подшипников станка

Мультипоточная передача данных и обход заторов в сетях

Мультиагентное решение задачи автономного позиционирования по камерам

Научно-образовательный центр «Математическая робототехника и искусственный интеллект»

Математическое, программное, алгоритмическое и аппаратное обеспечение

В состав СПбГУ входят 9 институтов, 18 факультетов, 15 крупных лабораторий и 24 ресурсных центра, которые способны выполнить экспертизу работ, по разным направлениям исследований на высоком уровне.

НОЦ СПбГУ «Математическая робототехника и искусственный интеллект»

Создаем будущее вместе!

Контакты: Амелин Константин директор НОЦ +79045105109 k.amelin@spbu.ru

